The Full Potential Equation: - Used to look at effect of linear compressibility between ~ M= 0.3 - 0.7 -> inviscial, compressible flow is a inform stream which is isentropic & irrotational. Velocits of irrotational flow written as $\mathbf{U} = \nabla \phi \longrightarrow \mathbf{U} = \frac{\partial \phi}{\partial \mathbf{x}} \qquad \mathbf{V} = \frac{\partial \phi}{\partial \mathbf{y}}$ → We want to obtain equation for Ø, using continuity, momentum & isentropic speed of sound, derivation in slides (non examinable), to give : $\left[a^{2}-\left(\frac{\partial\phi}{\partial x}\right)^{2}\right]\frac{\partial^{2}\phi}{\partial x^{2}}+\left[a^{2}-\left(\frac{\partial\phi}{\partial y}\right)^{2}\right]\frac{\partial^{2}\phi}{\partial y^{2}}-2\left(\frac{\partial\phi}{\partial x}\right)\left(\frac{\partial\phi}{\partial y}\right)\frac{\partial^{2}\phi}{\partial x\partial y}=0$ (1)unknowns are a & Ø abo have $a^{2} = a_{o}^{2} - \frac{\delta - 1}{2} \left[\left(\frac{\delta \emptyset}{\delta x} \right)^{2} + \left(\frac{\delta \emptyset}{\delta y} \right)^{2} \right]$ where a is known property 2 of flow Comparing equation (1) to Laplace's Equation: a² $\partial^2 \phi$ ∂x^2 Non ∂ø \₽] ∂²ø a² 220 0ø 🤎 00 00 2 dy2 Linear dy J da 30 δy 2000 $\frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} = 0$ Linear can't some full potential with superposition because it's non-linear -> need to make assumptions so that full potential becomes linear: We assume u & v are 'small' pertubations to freestream Voo v = v' $u = V_{\infty} + u'$

	0 :	-	V <i>0</i> 0	+	ሀ እብ	= {'		V 00	Ť	ð	x						V	-	Vc	x	- 1		Ψ									
	۷	-	v'	3	50	2)																										
S	ubs	titi	tir	9	Pe	tul	bat	ion.	. Vi	elna	itr	Ь	sck	, ij	to	U.	elo	ċt	D	re	ntie	d	ea	ust	ion		٩w	is				
"	pert	ub	atiò) N	vel	oà	ţ	ρο	ter	tis		qui	atio	N	/1			-)	r		_		V				J					
~	, ,	-/			አለ	'\2	2]	λ ²	ď,		ſ	- 1		ע ו	81	2	۱ ک	26	J			(ბ	۵ ′)		νQ,,	$\langle \rangle$	2d	,		^
a' -	-		æ	+ .	<u>dx</u>)	J	92	<u>μ</u> κ ²	+		a²	-	رم م	<u> </u>)		<u> </u>	-	- 2	2	V.	0 -	-)	- x /	JŲ.	ðy.) <u>}</u>	, <u>p</u> xdy)	-	0
1.				10	d	t.	Δ		dai	int		*		0	()	2	0	<u>.</u>	0	ha	cb		ŀ	1.	مام				.t.			
19	nor Nd		sca	lur	ig	f	all	tor	0 0	he	ad	, , 0	D D	ש כ	c C	ת 2י	00 ~d	de	e zniv	ioti	iie	u	r		pua	œ	e	μi	uoi			
																									_	_						
*	me	an)	IJ	e	are	•	Ŋ'n	ori⁄	ng	eff	ect	'n	бү	N	m·	ho	eà	r,	fea	tur	es	h	ke	ŞI	'nοc	ks						
																	•	0	nhy	ω	07 	ks	be	low	CI	iti	al,	т	alh	N	umk	be
																			0				(~	0.9	5 -	0.	6)					
L	nic	uż	ed	V	eloc	itz	f	ote	enti	ol	e	que	etić	n	:																	
			1			1	<u>ک</u> ړ	d			<u>λ</u> 2	d																				
			(-	- þ	\ <i>∞</i> ²)	<u>)</u>	$\frac{1}{\chi^2}$	+	-	ga	2		~	l)																
					5,	s		ant	F		ر ار		ata	, ,	hà	L	2-14	n f	•	<u>a a</u>	+	0	J	1.	مام	c 0.						
		. 1		1		1				0	em	VU				- La			N	ye		μω			pra							
>		Ned	A	to	0	uri	eor.	se	P	rest	JUH	2	Co	eff	icie	int	:		,					•								
	(Cp	=	<u> </u> 		°∞ √	2		l	mil	ting	in	. v	elo	atz	te	em	0	(fn	b n	B	erne	nll	.)	:							
				4	p pa		0				C	P	=	- 4	<u>. u</u> Væ	+	<u>U</u>	`** 	V 2	-	+	H.¢).T	•								
																.12		10			- (2				. \ 2	<u>۱</u>				, [,]	
												Ср	:			$\frac{\sqrt{2}}{\sqrt{2}}$,	:		-	<u>(</u>	J '	+	ر ۷۵۰ ارمه	+0 2	·)-	<u> </u>	~	-	2;	J _{oo}	
		^ _	~			2	υ'									0	1 [• •	ŀ		żb											
	(٦p		•		V	ø					-pr	e5 Ier	tuk	e rati	ion	yr f	relo	rit	j u	nr ir	en X	, (, .	ni di	iec	o tio	n.					
																				-												
	Jut)50	nia	;	Pr	an	d	ł	-	G(ou	er	ŀ	(י סו	re	ct	ion	•	:												
		r	eed	(0	С	har	ge	e	cal	ing	0	J	ρL	ene	, e	50	th	at	0	<i>ion</i>	ta	rt	fa	eto	r	dr	DSC	spe	ars	•	
								*			V		'	•															-	_		

Transformed plane has scaled coordinates : $x_{ic} = Cx$ $y_{ic} = Oy$ incompressible ue also scale pertubation potential so we can map incompressible and compressible flows on the same geometry: $\overline{\phi}(x_{ic}, y_{ic}) = \beta \phi'(x, y)$ $\beta = \sqrt{I - M_{o}^{2}}$ (Glavert factor) -> There are two possibilities to scale x & y to transform to Laplace: C = 1, $O = \beta$ or $C = \frac{1}{\beta}$, O = 1now have Laplace equation in new coordinate system: We $\frac{\partial^2 \emptyset}{\partial x_{ic}^2} + \frac{\partial^2 \emptyset}{\partial y_{ic}^2} = 0$ the pressure coefficient becomes : $C_{p} \approx \frac{1}{B} \left(-\frac{2\bar{u}}{V_{\infty}}\right)$ which is the incompressible pressure coefficient : by B $C_p \approx \frac{C_{p,0}}{B}$ $C_{l} = \frac{C_{lo}}{\beta}$ & $C_m = \frac{C_{mo}}{B}$ we can also find Ci k Cm as Predicted drag = 0 (0'Alembert) - Aerodynamic centre (at 0.25 c) unaffected Supersonic Lineaused Ackret Theory: $\frac{d\rho}{d\theta} = \frac{8 \text{ H}^2}{\sqrt{\text{H}^2 - 1}} \rho \qquad \text{assuming} \quad \rho = \rho_{\infty}, \text{ we can integrate wit } \theta$ $\rho - \rho_{\infty} = \frac{\chi M^2 \Theta}{M^2 - 1} \rho_{\infty} \rightarrow \frac{\rho}{R_0} - 1 = \frac{\chi M^2 \Theta}{M^2 - 1}$

20 JM_2²-1 Cp = 0 is radians this relates the pressure coefficient to the angle O the flow is turned by. O the if normal vector outwards from surface points back along freestream and -ve if points forwards along freestream. - its is an approximation & is quite accurate for small angles Applying this to a flat plate 20 aeropoil at ana a $C\rho_{lower} = \frac{2\alpha}{\sqrt{M_{o}^2 - 1}}$ M_{∞} $C_{N} = \frac{4\alpha}{M^{2}-1}$ C_D $C_{pupper} = \frac{-2\alpha}{\sqrt{M_{e}^{2}-1}}$ $C_{L} = C_{N} \cos \alpha \approx \frac{4\alpha}{\sqrt{M_{o}^{2}-1}}$ $C_d = C_N \sin \alpha \approx C_N \alpha \approx \frac{4\alpha^2}{[M_{\infty}^2 - 1]}$ for supersonic drag ("wave drag") $C_d = \frac{\sqrt{M_{\infty}^2 - 1}}{4} C_l^2$ - results give a constant pressure distribution → centre of pressure at 0.5 C For a thin 'double wedge' high speed section, linearsed Ackret theory gues: compression expansion $C_{d} = 4 \frac{(t/c)^{2}}{\sqrt{H_{\infty}^{2} - 1}}$ $4 \frac{\alpha^{2} + (t/c)^{2}}{\sqrt{M_{\infty}^{2} - 1}}$ Cd

additional drag component due to angle of attock (: increased lift) Ackeret is simpler than shock expansion theory and is useful for anneal Surjoces. Wave Drag: Evergy is lost to wave system shed by aerofoil - occurs even in sentropic flow Nave drag hos 3 components Lift Thickness present at zero-lift conditions Camper $- C_{D_{\text{Thickness}}}$ + $C_{D_{\mathrm{Total}}}$ $-C_{D_{Camber}}$ + $C_{D_{\alpha}}$ α (______ Linearised 20 Aerofoil Characteristics: Subsonic flow Supersonic flow Ma_{co} <1 Ma_{co}>1 Prandtl-Glaueri Ackeret 2π da da Incompressible 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Ma_{co} ao typical values 0,4 1/4 ≥ v x Profile leading edge bo 20 06 0,4 0; ²] 0,2 1,4 1,6 1.8 20

