The Full Potential Equation: - Used to look at effect of linear compressibility between \sim M = 0.3 - 0.7 > inviscid, compressible flow in a uniform stream which is isentropic d irrotational. Velocity of irrotational How written as $U = \nabla \phi$ \longrightarrow $U = \frac{\partial \phi}{\partial x}$ $V = \frac{\partial \phi}{\partial y}$ We want to obtain equation for ρ , using continuity, momentum a isentropic speed of sound, remalion in slides (non-examinable), to give $\left[a^2-\left(\frac{\partial\emptyset}{\partial x}\right)^2\right]\frac{\partial^2\emptyset}{\partial x^2} + \left[a^2-\left(\frac{\partial\emptyset}{\partial y}\right)^2\right]\frac{\partial^2\emptyset}{\partial y^2} - 2\left(\frac{\partial\emptyset}{\partial x}\right)\left(\frac{\partial\emptyset}{\partial y}\right)\frac{\partial^2\emptyset}{\partial x\partial y} = 0$ (1) unknowns are a $\&$ \emptyset also have $a^2 = a_o^2 - \frac{\gamma - 1}{2} \left[\left(\frac{\delta \phi}{\delta x} \right)^2 + \left(\frac{\delta \phi}{\delta y} \right)^2 \right]$ (2) where a_o is known property g flow Comparing equation 1 to Laplace's Equation Non
Iwear fi 19.5141 ^t la 1 51 ⁰ 2f HFy ^s ⁰ linear $\frac{\delta^2 \varphi}{\delta x^2} + \frac{\delta^2 \varphi}{\delta x^2} = 0$ \Box $\frac{\delta y^2}{2}$ can't solve full potential with superposition because it's non-linear \rightarrow need to make assumptions so that full potential becomes knear: we assume v d v are 'small' pertubations to freestream V_{∞} $u = V_{\infty} + u'$

 $\frac{1}{2}$ set $\frac{1}{2}$ Transformed plane has scaled coordinates: x_{ic} = c_{α} yic = o_y incompressible 9 we also scale pertubation potential so we can map incompressible and compressible flows on the same geometry $\vec{\phi}$ (xic, yic) = β ϕ (x, y) \rightarrow β = $\sqrt{1-M_{\infty}^{2}}$ (Glavert factor \rightarrow There are two possibilities to scale x & y to transform to Laplace: $C = 1$, $Q = \beta$ or $C = \frac{1}{\beta}$, $Q = 1$ We now have Laplace equation on new coordinate system $\frac{\partial^2 \emptyset}{\partial x_{ic}^2} + \frac{\partial^2 \emptyset}{\partial y_{ic}^2} = 0$ the pressure coefficient becomes $C\rho > \approx$ $\frac{1}{\beta}$ ($\frac{2\pi}{\sqrt{\infty}}$) which is the incompressible
pressure coefficient = by pressure coefficient = by β $C_p \approx \frac{C_{p,0}}{B}$ $\frac{p}{\sqrt{p}}$ $C_{L} = \frac{C_{L_{b}}}{\beta}$ we can also find C_c k C_m as $C_c = \frac{C_{c_0}}{A}$ & $\frac{C_{m_o}}{C_{m_o}}$ β β $Predicted$ drag = 0 (D'Alembert) - Aerodynamic centre (at 0.25c) unaffected Supersonic Lineaased Ackret Theory $\frac{d\rho}{d\theta} = \frac{\gamma H^2}{\sqrt{H^2-1}} \rho$ assuming $\rho = \rho_{\infty}$, we can integrate wrt θ $\frac{1}{4^{2}-1}$ P $\rho - \rho_{\infty} = \frac{\gamma H^2 \Theta}{\sqrt{H^2 - 1}} \rho_{\infty} \longrightarrow \frac{\rho}{\rho_{\infty}} - 1 = \frac{\gamma H^2 \Theta}{\sqrt{H^2 - 1}}$

 $\frac{20}{\sqrt{M_{\infty}^2-1}}$ C_{ρ} \vert = θ in radians this relates the pressure coefficient to the angle θ the flow is turned by. O tue if normal vector outwards from surfore points back dong freestream this is an approximation & is quite accurate for small angles Applying this to a flat plate 20 aerofoil at a oa α $C\rho_{lower} = \frac{2\alpha}{\sqrt{n_{o}^{2}-1}}$ M_{∞} $C_N = \frac{4\alpha}{\sqrt{M_{\odot}^2 - 1}}$ $\overline{C_{D}}$ C_{ρ} upper = $\frac{2\alpha}{\sqrt{M_{\infty}^2 - 1}}$ $\frac{4\alpha}{\sqrt{M_{\infty}^{2}-1}}$ $C_1 = C_1 \cos \alpha \approx$ $\frac{4\alpha^{2}}{M_{\infty}^{2}-1}$ $C_d = C_N sin \alpha \approx C_N \alpha$ \approx for supersonic drag ("wave drag") $\frac{\sqrt{M_{\infty}^2-1}}{4}C_l^2$ $C_d =$ - results give a constant pressure distribution centre of pressure at 0.5 c For a thir double wedge "nigh speed section, linearsed Ackret theory gues: compression expansion $4 \frac{(t/c)^2}{\sqrt{H_{\infty}^2+1}}$ \overline{Cd} $4\frac{\alpha^{2}+(t/c)^{2}}{\sqrt{H_{\infty}^{2}-1}}$ c_d

